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ABSTRACT

~

\:\Path Planning is an intricate part of the navigation
function of any vehicle traveling between two points 1in
space. In an autonomous underwater vehicle, a trajectory
may be planned between two points using the optimization
techniques of ADS (Advanced Design Synthesis) coupled to a
motion analysis routine, DSL (Dynamic Simulation Language).
The problem is posed as a two-point-boundary-value problem
with initial states and desired final states known, as well
as a final time specified. The objective function is
minimized in the form of a quadratic regulator for the
purpose of conserving the vehicles energy supply. An
obstacle in the dive plane (X-Z plane) is introduced and
successfully avoided using the constrained optimization
technique. The use of optimization is proven as a feasible
method for successfu;ly planning the trajectories of

’

underwater vehicles.
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THESIS DISCLATIMER

The reader is cautioned that computer programs developed
in this research may not have been exercised for all cases
of interest. While every effort has been made, within the
time available, to ensure that the programs are free of
computational and logic errors, they cannot be considered
validated. Any application of these programs without

additional verification is at the risk of the user.
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: I. INTRODUCTION o4
iy
Path planning is the function provided by an intelligent N
system which determines a safe, collision free trajectory of E\
travel between two points, a start point and a target point, N
for a specific time 1lapse. This has been performed _:
successfully for a number of land vehicles by many different :
techniques [Refs.1-3]. Several classes of techniques t
" available today include graphical search methods [Refs.4-8], f’
artificial potential field methods [Refs. 9-13] and optimal &.f"
control theory ([Refs. 14,15). The approach taken in the
present work falls in the optimal control theory class. 5\
Here, a single-valued penalty function was used to evaluate :
a path between the two positions. The "best” path was then i
found by minimizing the penalty. The mathematics of this '_-
approach was fairly intense, but the advantage is that :_;
optimization in space and time were accomplished E :
simultaneously. ‘-
Path planning is an open 1loop control problem that ‘\
optimizes the control vector U to produce a best state !:\,
trajectory, X, based on the penalty function, which is also ;E
! referred to as the objective function. .:-E
This baseline study of optimal control theory as applied _!‘,
to path planning was directed toward being utilized in an
Autonomous Underwater Vehicle (AUV) testbed at the Naval \J_
r
-
),
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Postgraduate School. At the time of this writing an AUV was
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being designed to operate in the ©ocean environment

untethered from any command structure or man-in-the-loop

()

W

W system. To operate on its own the AUV must have, in

3

': addition to many other self sustaining systems, a system or .
(4
' means to plan 1its track from the present position to a

o !
;3 target position some distance away and at some specified ;
N )
o time in the future. Figure 1.1 shows the states that are of

W

' major concern when dealing with motion in <the vertical d
\J (]
o plane. The x-state is the distance the vehicle travels in :
e ;
H )
iﬁ the horizontal direction. The 2z-state 1s the distance ;
A )
X (
l"

o
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the vehicle travels vertically. The theta-state is the
pitch angle of the vehicle, in radians. As mentioned
earlier, the objective was to have this path be safe,
collision free and energy efficient. Energy utilization was
of key importance since the power source was assumed to be
limited to a finite source onboard. The path planner was
assumed to operate in a large area transit mode where the
speed would be moderate and the obstacle environment sparse.

The Automatic Design Synthesis (ADS) FORTRAN program
[(Ref. 16] was utilized to accomplish the optimization
when coupled to the Dynamic Simulation Language (DSL)
(Ref.17]. The coupled package was referred to by the
acronym ADSL. The IBM 3033 mainframe computer system
provided the environment to run the programs. ADS provided
an options package that allowed for the utilization of all
known methods available to do numerical optimization.
DSL provided selection of integration methods necessary
to integrate the equations of motion (state equation) and
determine the "best" path. The amount of time necessary to
compute this path was also a factor worthy of consideration
as it was desired to have the path planner perform at, or
near, real time. It was assumed that these algorithms would
later be hard-wired into a system for use in an underwater
vehicle.

The approach taken was to initially utilize ADSL on an

unconstrained nonlinear SISO (single input single output)

ALY
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open loop minimization problem. The problem was chosen for
its similarity to the AUV nonlinear dynamics structure.
This problem allowed for initial studies on effectiveness of
integrators, time interval step sizes, strategy and
optimizers. This procedure was then applied to a simplified
linear model of dive plane motion with a corresponding
multiple input multiple output (MIMO) model. Comparison of
~ results with the full-scale nonlinear model developed by Lt.

Boncal followed [Ref.18). The "best" path was determined in

all cases.
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“ II. SISO MINIMIZATION PROBLEM
b A. THE PROBLEM 4
-
- The SISO minimization problem was based on the
>
’ continuous time problem of example 10.2-6 of Sage
; (Ref.19:p.313] (see Appendix A). This problem was chosen :
O because of its similarity to the structure of the nonlinear :
. dynamics of an underwater vehicle which will be discussed in ;
' the next part of this study. Sage arrived at the solution !
fé by wusing a «continuous time analytical method and a B
gradient-in-function-space technique. Optimization was
i
: reached through an analytical equation that gave the results
. plotted in Figure 2.1 for the control variable, and Figure
’ 2.2 for the state variable. .
In the present work a discrete time solution was chosen .
- that gave a set of single-valued control inputs evenly X
< distributed over a specified number of delta-time steps.
Y g
: The optimum open loop control vector therefore appeared as a ]
f
2 stepped function in time, which well mimics a computer-based ~
> controller output.
z B. OBJECTIVE FUNCTION
" The objective function was a one dimensional quadratic
& performance index of the form:
-
Cd
b T
y J = [ (x(t)Tex(t) + u(t)TrRu(t))dt (2-1)
' 0
7 5
o
)
. [l
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Figure 2.1 Control Optimization, after Sage [Ref. 19)
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where:

the control variable; and

c
]

<
]

the output state.

In actuality the computer saw the objective function as:

—ir~12
[\¥]
[\e]

(x{ + U] oT (2-2)

where:

4
I

the number of discrete time intervals, each
of which corresponds to a single design
variable (DV) in the control variable history.

Figure 2.3 shows the relationship between the design
variables (DV), the time intervals, the discrete control

variables (also DV) and the continuous control signal.

C. DESIGN VARIABLES

It was desired to chose a number of DV's in U that would
yield a close approximation of the continuous time solution.
Table 1 shows the mainframe computer run times and error
data for cases where 100, 50, 20, and 10 time intervals were
established between start time and finish time (0 to 1.0
sec). The rectangular integration method with .005 second
step size was used for all cases.

Based on the extended virtual machine time (VM) on the

NPS IBM mainframe computer for the 100 and 50 time interval
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Figure 2.3 Discrete vs. Continuous Controls
!
oo TABLE 1
“ DESIGN VARIABLE COMPARISON
% Number X-State
o of Objec-  X-State Final
oo Design Run Objec- tive Final Value
LAY Variable Time tive Error Value Error
L
- SAGE - 4.4859 - 0.83327 -
-
I 100 8.38 4.4930 .16% 0.84347 1.2%
i
oo 50 4.96 4.4934 .17% 0.84339 1.2%
> 20 3.30 4.4920 .14% 0.83680 .42%
o 10 2.46 4.4917 .13% 0.83385 .07%
N
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problems and the fact that the results do not show any
improvement in the solution, these two intervals were not
considered as viable solutions. The 20 and 10 interval
results were further analyzed to determine the number of
design variables and also the recommended time step size to
be used during the integration of both the state X and
objective function J. First, however, the type of

integration method needed to be determined.

D. INTEGRATION METHOD

DSL (Dynamic Simulation Language) has a variety of

integrators to use for any type of problem. Table 2 gives

the available methods in three groups.

TABLE 2

DSL INTEGRATION METHODS

Fixed Step Methods

RECT Rectangular

TRAPZ Trapezoidal

SIMP Simpson's

RKSFX Runge-Kutta
Variable-step Methods

RKS Runge-Kutta

RK5 Runge-Kutta
Variable~-step, variable-order Methods

ADAMS Adams-Moulton

STIFF Gear, full Jacobian

BSTIFF Gear, Banded Jacobian

B - - ey el e s ~ ooy e e
N A A AT A A A A N N P R A
Sl ; 2



", The fixed step methods are easily controlled using the
DELT parameter that tells DSL the delta time step size to
use in the simulation. The rectangular method is the

simplest, and the Runge-Kutta the more complex of the fixed

P

step integration methods. Since the design variables were

actually based on fixed time increments, the variable step

L

i methods were more difficult to utilize. However, with the
»3 additional DSL parameters of DELMAX and DELMIN these methods
* were also utilized to conduct the simulation comparisons.
:: Comparisons using the 10 and 20 time intervals were made
o with the RECT, RKSFX, RK5, and ADAMS methods.

& Results found in Table 3 give the run times and
E accuracies of both the objective function and the value of
3 the X state at 1.0 second, the final time. The results
Sl

show that the fixed step rectangular integration method was
! the overall most accurate method when considering both
objective function and final X state after the 1.0 second
interval. Also, as could be expected, the run times
K increased with complexity of the integration routines. To
ensure that the variable step size methods covered each
design variable time increment, the DELMAX and DELMIN values
were set equal to the DELT parameter. The accuracies of the

objective function were very good for the higher order

DAL RN

integration methods; however, their accuracies for the final

) X state were worse than for the simple rectangular method.
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When run time was considered as well, the "best for
least" concept was used and the rectangular integration

routine was selected as the best overall choice.

E. INTEGRATION STEP SIZE

The integration algorithms required a finite amount of
time to run depending on step size. As the step size
decreased, the time to complete the integration of the
objective and state equations increased. Also, the accuracy
of the integration result increased to a point then remained
relatively constant. Table 4 provides tabulated data on
integration step size, time requirements and accuracies for

the two feasible time interval solutions.

TABLE 4

INTEGRATION RESULTS

Time 20 Error 10 Error Sage
Category Intervals DV's DV's Result

Run .001 11.38 7.61 -
.005 3.30 2.46

Time .01 2.21 1.77

(Sec) .05 1.34 1.21

.001 4.4877 4.4874 4.4859
Objective . 005 4.4920 4.4917

.01 4.4975 4.4972
Value .05 4.5463 4.5463

.001 .84476 .84181

Final .005 .83680 .83385
X .01 .82678 .82383
State .05 .73755 .73648
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Results revealed that for 10 time intervals the best
performance was found at the 0.005 second integration time
step size. The run time was approximately equivalent to the
20 interval 0.01 second integration step size. The key to
performance was the accuracy of the output state with
respect to time. Figure 2.4 superimposes the Sage solution
for the X state with the X state for the 20 interval 0.005
step size and the 10 interval 0.005 step size. They are all
very cClose. However, the control prediction becomes the
discriminating factor. Here, the 10 interval 0.005 step
size shown in Figure 2.5 is the best choice for duplicating
the control variable.

Therefore the overall "best for least" result was found
to be the 10 time intervals, 0.005 second integration step
size 1in conjunction with the rectangular integration

algorithm.

F. OPTIMIZATION

The ADS (Advanced Design Synthesis) program provided the
means to combine a wide variety of optimization concepts so
that the best combination could be selected to solve the
problem. The concepts were divided into three basic levels
for solving the type of minimization problem described in
Reference 20, page 1. These three levels were the strategy
level, the optimizer level and the one dimensional search
level. Table 5 1lists the 1levels and the algorithms

available. Reference 20, page 5 provides a matrix which
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=
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Figure 2.4 X-state Values for Discrete Controls
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Figure 2.5 Discrete Control Results
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Y TABLE 5 24
ADS OPTIONS %
4
-~
Strategy (ISRRAT) -~
0 - None i
)
1 - SUMT, Exterior Penalty Function .
Y 2 - SUMT, Linear Extended Interior ?_
3 - SUMT, Quadratic Extended Interior ?
| 4 - Cubic Extended Interior E
5 - Augmented Lagrange Multiplier Method v
6 - Sequential Linear Programming iy
7 - Method of Centers ?”
; 8 - Sequential Quadratic Programming jf
t )
X 9 - Sequential Convex Programming N
N
Optimizer (IOPT) !
-
1 - Fletcher-Reeves f
™y
.
2 - Davidon-Fletcher-Powell (DFP) ?\
3 - Broydon-Fletcher-Golfarb-Shanno (BFGS) -
| 4 - Method of Feasible Directions EA
5 - Modified Method of Feasible Directions 3
v
One dimensional Search (IONED) o
N
Sy
1 - Golden Section Method Ny
o
2 - Golden Section and Polynomial N,
?
3 - Polynomial Interpolation, bounded ;Q
<)
4 - Polynomial Extrapolation .
5 - Golden Section Method i_
23
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TABLE 5 (CONTINUED)

2L

6 - Golden Section and Polynomial
7 - Polynomial Interpolation, bounded

P 8 - Polynomial Extrapolation

ALY

gives the meaningful combinations of algorithms to be used E_E
for various types of problems. In summary, the two major E‘
types of ©problems are classified as constrained or E:
unconstrained minimization. The Sage problem was :1
unconstrained so strategies 1 through 5, optimizers 1 éi
through 3 and one dimensional search methods 1 through 4 ?
were all possible selections. For a constrained problem, as g
for the AUV model, strategies 6 through 9, optimizers 4 and ;‘
5 and one dimensional search methods 5 through 8 were o
possible. If the strategy 1is eliminated, the solution %g
process starts with the optimizer. Ek
Olson [Ref.21:pp. 27-32) summarized the options ?'
available and made further reference to Vanderplaats 3;
(Ref.22] for additional details concerning these methods and .gi
algorithms. The material will not be repeated here. C:
The strategy, as stated earlier, was optional for all %

.

problems; however, an optimizer and one dimensional search ??
algorithm were required. S?
In determining the combination of strategy, optimizer %i

and one dimensional search method that was the most accurate %:
for solving the Sage unconstrained problem, all the possible ZT
’

%

o
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.ﬁ combinations were run. It was quickly determined that the
-i strategy option when invoked caused the execution time and
v the number of calls to ADS tu increase. The solutions were
,% not as accurate as those without a strategy invoked. It was
ig determined that the best optimizer proved to be the
& Fletcher-Reeves conjugate direction method (IOPT = 1). This
; method was a simple modification to the first-order method
.3 of steepest descent. It involved gradient informatiocon
c normally supplied by using finite difference computations
1% [Ref.22:p. 88]. The conjugate direction method app;oach
‘i picked search directions that were conjugate by definition
‘? of the search direction equation:

3

,‘\'

X x! = X0 - o7F(X0) (2-3)
9% ~

%T where:

-7,

éj %1 = new design variable vector

> X0 = previous design variable vector

Eﬁ a = scalar parameter

= 7 F(X%) = gradient of F(X%). [Ref. 22:p. 74)

::: -

o The one dimensional search algorithm that provided the
_é best results with the optimizer was the method of polynomial i
i’ extrapolation (IONED = 4). The graphical results of Figures
E 2.4 and 2.5 were those using the above optimizer and one
E dimensional search combination.
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X I1I. PATH OPTIMIZATION FOR A LINEAR MIMO PLANT -
L
‘ Z
3 A. MIMO PLANT FORMULATION 4
A
! With the optimization meihod tested on a SISO =
. -
unconstrained problem, and realizing computation times were 3
) satisfactory for a near real time solution, the method was 2
. v
applied to a linear MIMO plant. Specifically, a linearized :ﬁ
model of an under-water vehicle restricted to dive plane ‘
~)
; motion was developed. The development followed the ;
\ LS
) L
procedures specified 1in [Ref. 23: p. 476] with the ]
assumptions that: ]
o~
‘ i) the vehicle equilibrium condition was along a :_
: straight line path: )
K ii) it traveled at constant speed; K
iii) it moved in a fixed horizontal direction, and N
“
- iv) it had xg = 0. (xg is the distance the body -
; fixed coordinate system is from the actual Y
center of gravity of the vehicle in the x- ;o
direction.) o
: The standard six-degree-of-freedom dynamic equatiocns of )
A ™
motion of a subwarine developed by Gertler and Hagen l
[(Ref.24] and revised by Feldman [Ref.25] were the nonlinear 5 3
equations that were linearized. Due to the above assumption ﬁ'
b 9
‘¢ for motion restricted to the vertical plane, the axial force Py
equation (X) was decoupled from the pitch moment equation -
g (M) and the normal force equation (2Z). The equations }.
: simplify to the following: v
: 8
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“Z, w+(mw—z“.l)w —(Zq+m )g —qu = 235DS +Z45DB (3-1)

wsy

*

' L] L ' ot v ot f ' ' '
- -M M -Me -] A = -
Mw -Mw qu -&—(Iy Mq)q M94 —MdSDS +M3EDB (3-2)

Tt

L &

The additional coupling equation linking the forward motion

L

speed to the problem is:

«
PR Rl AT AT -

2! = W' - upe (3-3)
J where u; is a constant forward speed. The model is
S completely nondimensionalized by the vehicle's length of
: approximately 17 feet, and a velocity of six feet per
E second. The equations were modelled in state space form
SE with the four states being:
£ thetadot = rate of change of pitch
; theta = pitch angle in radians
N
N W = rate of change of depth
s z = depth (positive going down).
2 A DSL simulation program (STSPACE3 DSL in Appendix B)
l verified that the model was working properly. The coupling
- of ADS and DSL followed with path optimization as the goal.
N

The vehicle from which this model is derived has coupled

stern and bow planes. That 1is, given a stern plane

T e m s

deflection, the bow planes deflect opposite in direction

AT

with a given proportionality constant. This aids 1in

maneuvering the vehicle. With this coupling, the actual

-
A Ve 3 B A
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control matrix was a scalar, associated with the stern plane
deflection only. Controllability was checked and the plant
was verified as controllable. However, in the following
discussion, the planes were decoupled so that two separate
control inputs were optimized over the specified length of
time to perform any dive maneuver. This was done for

additional controllability.

B. DEFINING THE PROBLEM

When an underwater vehicle travels from one position to
another, the path wupon which it traverses is a smooth
continuous path that does not have discontinuities. If the
vehicle is stable, the trajectory is predictable and it may
be expected that a path planner using optimization
techniques could find the "best" path from the start
position to the end. Further, while finding the best path,
all stationary obstacles must be avoided, if feasible.

The sample problem was formulated for a maneuver in the
vertical plane, a one unit depth change (17.425 feet) in 20
seconds (t' = 7.0), with the vehicle at an initial forward
velocity of six feet per second (one unit of nondimensional
velocity), without obstacles. The initial conditions were
associated with the vehicle traveling at constant horizontal
motion at an arbitrary depth (zero in the figures). At
time equal to zero (t' = 0.0) the coordinate system was
positioned at the vehicles center of gravity. The final

state was to occur at time equal to 20 seconds (t' = 7.0)
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with Z = 17.425, theta = 0.0, and the control surfaces at

their equilibrium positions. In other words, the vehicle
was to be at the desired end depth at zero pitch and with
control surfaces at the neutral position so that immediately
after 20 seconds the vehicle would continue to travel along
the desired depth. Before discussing the optimization
techniques required to solve such a problem as depth change,

the objective function and approach taken will be discussed.

C. THE OBJECTIVE FUNCTION

For the 1linear plant model given by a system of

equations in the form

6.
[}
L
+
‘m
Iz =

(3-4)

the desired function to minimize is an error function of

the form

T
[ [xg(t) = x(t)1TQ(xe(t) - x(t)]at (3-5)
o X Q%

In addition, since power consumption is paramount when
dealing with self —contained wunderwater vehicles, a
minimization of the control energy should be included. The

following equation forms a power penalty on the control

vector u:

T
f (u(t) R u(t)]dt (3-6)
0 - -~ o~
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So, the combined objective function that should be minimized

R SR O

is:
T '
/ {[ff(t)‘§(t)]Tgfff(t)‘f(t)] + H(t)TBB(t))dt (3=7) :
’ 4
This is the quadratic performance index presented by Ogata. ;;
[Ref.26:p.753) E
For a depth change maneuver all states except the ;E
position states should be zero at the end state. In a i

-
-
e

strict X-Z plane maneuver with the X state decoupled, the

final Z position will have a value other than zero (say, 2z);

J':' 3

‘ -

hence, the "f" subscripts in the equation above. %,
7
|\f
D. THE APPROACH 5
Four combinations of end time treatments are thus g'
possible to solve this two point boundary value problem: y;
1) Minimize the quadratic performance index by gain \?
adjustment without end constraints. vl

‘.-B
2) Use the ADS defined end constraints and minimize the Ui
objective. oy
bt

3) Combine ADS defined end constraints with penalty :
functions added to the objective. ot

W

4) Minimize the objective combined with penalty ]
functions on the desired terminal conditions, N
without ADS end constraints. N

o
The results of each combination is presented in the o
.

following discussion and graphically in the accompanying

figures. A discussion of the accuracy and timing will ﬁ
“r
follow at the end of the chapter. All methods required the o
“.r

i
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use of side constraints to limit the bow and stern plane

deflections.

1. Side Constraints

i After considering the actual movement of an ;
'g underwater vehicle through the water, it was realized that
! several restrictions needed to be placed on the vehicles'
i: maneuvering surfaces. The maximum stern plane deflection
‘: was limited to no more than a 10 degrees up or down angle
M)

from the equilibrium position, and the bow planes were

;‘ limited to approximately 15 degrees up and down angle. To :
ﬁ’ effect such a restriction in ADS, the side constraint
b approach must be invoked. In Vanderplaats' formulation of
fi the problem for the ADS package, the side constraints are

E the upper and lower bounds of the design variables to be

® optimized ([Ref.20]. They are identified as VLB, VUB

Vv respectively in the programs. This is an advantage to a

: constrained optimization problem because it 1limits the

& search area in which to minimize the objective function.
;5 This kind of constraint can be bumped up against and become

g active, which means that the constraint value is in effect ;
3 for a specific design variable. If all of the side

“ constraints are active, then there is a good possibility ‘
f} that the true minimum has not been reached as the design

" variables have most likely hit the constraint before the .
;3 gradients had zerced (found their minimum). If the side )
o

:e 24 :
b :
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.

A
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constraints are active then the problem may need to be
redefined within the limits of the side constraints.
2. Quadratic Performance Index Weighting Alone

The gquadratic performance index (Eq. 3-7) was the
objective function that ADS minimized using the
unconstrained minimization techinque concluded from the
previous work in Chapter II. The method, repeated here for
the reader, was the Fletcher-Reeves optimizer (IOPT = 1) and
the Polynomial extrapolation one dimensional search method
(IONED = 4).

The run times were favorable at 1less than four
seconds for the weighting matrix determined '"best." It was
observed that as weighting was added to improve the depth
accuracy the pitch accuracy worsened, and vice versa. As a
result of this, the weighting matrix that was determined to
produce the "best" result was the identity matrix. The
"best" result produced a five percent difference between the
desired depth and the actual depth. The pitch angle,
however, ended up short by over six degrees although it was
falling off toward zero from its maximum deflection.

The results indicate, and are verified by another
deeper depth change for the same terminal time, that
although depth can be achieved relatively accurately the
additional desired end state of zero pitch angle was not
achievable. Figqures 3.1 and 3.2 present the results of two

different depth changes using the same gain matrix
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determined for the first depth change (the deeper depth).
The accuracy of the terminal depth, in general, increased
with an increase in size of the depth change.

The same depth change was then given twice as much
time to get to the desired depth to test the adequacy of the
weighting matrix to varying dive durations. Figures 3.3 and
3.4 show the results of these runs. The figures show that
deptl. was increasing at the terminal time and pitch angle
was falling off, but at an extremely slow rate. Figures 3.1
throusa 3.4 illustrate that the "best" weighting was a
function of the specific dive ordered, in the unconstrained
end time cases. Clearly the two point boundary value
problem could not be strictly enforced using this approach

alone. It was obvious that something was needed to "drive"

IR

the solution to the desired terminal end states at the
desired end time.

3. ADS End State Constraints

3
9
)
A
LS,
>

The choice of end constraint types available in ADS
are found in the definition of the vector, 1IDG. IDG
contains parameters that must be specified in the call to
ADS and it specifies the type of each constraint used in the
problem. Table 6 lists the available types of constraints
handled by ADS [Ref.20:p. 11]. Further investigation
revealed that the best method to satisfy the end condition
constraints was to use two ADS constraints defined as

nonlinear equality types (IDG = -1) for each terminal end
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TABLE 6

CONSTRAINT TYPES IN ADS

; 1. Linear equality (IDG(I) = =2)

) 2. Nonlinear equality (IDG(I) = =-1)

. 3. Nonlinear inequality (IDG(I) = 0 or 1)
i 4. Linear inecquality (IDG(I) = 2)

condition specified; the constraint and its negative. For
example, a depth maneuver to an arbitrary depth of 50 feet

. required two end constraints to be written. ADS requires

v one of these to be entered via the following inequality:

-

o G(1) < 2 - 50. (3-8)
2

o

r. Here, ADS was told to recognize the equality via IDG = -1.

Thus when z is greater than 50 feet, this condition is not

satisfied and it does penalize the optimization. Similarly,

introducing the negative of this constraint,

2 G(2) < 50 - Z (3-9)
N enforces that Z must be less than or equal to 50 feet. ADS
. attempts to satisfy both constraints on 2z by forcing the
value of Z to 50 feet. A similar method was used to apply
terminal constraints on all the final states.
o
) 31
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1n addition to the constraint relationships, the

optimization algorithm had to be changed in order to carry
out a constrained minimization problem. It was necessary to
conduct a study of the effects on accuracy and run time, as
well as a study on which optimization algorithm was best
suited to this problen.

The ADS choices for such a problem as this were
(refer to Table 5) the 047, 057, 657, 533, and 133 cptions.
Table 7 presents the results of running this ADS constrained
terminal condition problem using each of the five options.
By invoking the use of a strategy option, the run time
increased a minimum of 66 percent over the shortest runtime.
The "best" method, considering both accuracy and runtime,
was the 057 option. This was used in all the remaining ADS
constrained cases.

Solving the terminal constrained problem using the
057 option did require some weighting of the constraints in
crder to produce the "best" accuracy and run time. The
weighting of the constraints was determined to be 0.5 for
the two depth constraints and 10.0 for the two pitch
constraints. When these weights were applied to a deeper
depth maneuver, the final depth was approximately six inches
from the desired depth. The pitch angle was also small,
less than 0.02 degrees. Figures 3.5 and 3.6 present the
results graphically for both depth and pitch, and for

both depth changes. The results illustrate the vers-=tility
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y

of the ADS constraints to handle the typical range of depth oy

| changes without changing the weighting factors either on the EE
constraints or within the objective function. i:

i 4. ADS and Penalty Function Combinations §
N

Another method to enforce terminal conditions is by %;

# creating penalty functions and adding them to the original :.
objective function [Ref. 19:p. 315]. Given the terminal ;i

conditions for this problem, the penalty function for depth ?

and pitch respectively are, (ORDERED DEPTH - Z) squared and E“

‘

(PITCH) squared. Two cases were considered, the first case :‘

was an ADS constraint on pitch and the penalty function on E

depth. The second was an ADS constraint on depth and a E“

penalty function on pitch. sf

a. ADS Constraint on Pitch and Penalty on Depth Ef

This first case required both the pitch El

3

constraint and the depth penalty function to be weighted -‘

close to a thousand in order to achieve satisfactory ;l

accuracy for the 17 foot dive maneuver. Figures 3.7 and 3.8 i
illustrate the trajectories and pitch performance of the two E.

dives discussed. Weighting again appeared to be a function E

of the magnitude of the depth change maneuver using this i

combination to enforce the terminal conditions. E

b. ADS Constraint on Depth and Penalty on Pitch %;

Reversing the roles of depth and pitch terminal N
constraints resulted in much improved accuracies and E:

response then the previously discussed method. With the ADS i}

3, | —
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depth constraints weighted at unity and the pitch penalty
function weighted at 70.0 for the 17 foot dive, the depth
was perfectly satisfied and the pitch angle was extremely
accurate. The performance of this combination when applied
to the 100 feet depth change maneuver was considered
acceptable. Weighting was not a function of the magnitude

of the depth change. Figures 3.9 and 3.10 graphically
present the results.

5. Unconstrained Minimization Using Both Penalties

The final minimization method studied went back to
using the unconstrained minimization technique and applied
both of the terminal conditions as penalties on the
objective function. Depth and pitch terminal conditions
were put in penalty functions previously described and added
external to the integral of the original objective function.
No ADS defined constraints were used and ADS optimization
combination 014 was applied as before. This method proved
to be ill-fated for this objective function. Increased
weighting on the penalties drove the answer to zero and the
"best" weighting proved to be the identity matrix. However,
at this weighting, the depth achieved was a third of the
ordered depth but the pitch was acceptable at 0.0713
degrees. For these reasons the data is not displayed

graphically and this method was not further analyzed.
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6. Timing and Accuracy 4

Thus, only three of the methods were compared to :

choose the method best suited for this problem and the s
h obstacle avoidance situation discussed in the next E

)

' chapter. The three methods were: ADS defined constraints E
only, ADS defined constraint on pitch and penalty on depth ;

and ADS constraint on depth and penalty on pitch. The X

results are compiled in Table 8.

The timing criteria together with desirable accuracy f
:, caused the "ADS constraints only" method to be the best 3
‘ solution for the path planning problem posed as a two point ;.
boundary value problem. ».
Although the deeper dives' final depth was off by ‘.;
six inches in the selected method and pitch was slightly
?

over a tenth of a degree, it was clear that this method had =

| very good accuracy and near real time performance, it
J: produced the smallest objective function and required the :
. least reruns on the average than the other methods. ;
’ It is evident that for the type of dynamic path S
o planning problem undertaken here, the need for an end :
constraint to "drive" the trajectory to its final goal was v

determined. The ability of the ADS optimization program ~
proved feasible to satisfy this simple linearized trajectory i
problem. "_\

, »
3 N
: ;
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IVv. PATH PLANNTING APPLICATIONS

é A full scale nonlinear simulation model of the study

3 vehicle was developed by Lt. Boncal in Reference 18. The
model was a full six degree-of-freedom model with 12 states

*l

j that took into account all properties of the vehicle and its

=

3 motion through water. Comparison of the previous linear

model results with those of the nonlinear model were made
~ for the following reasons:
J
ﬁ 1) the solution to the linear problem would be easier
3 and, therefore, would require 1less real time to

compute, and

- 2) a determination was necessary as to whether the
" linearized version would be accurate enough compared
o to the nonlinear version.
-
X A. LINEAR VERSUS NONLINEAR PATH PLANNING
ﬁ Each time the optimization program was run, the data
N that it produced provided the control vector for each
Y, control surface used, e.g., the stern plane and bow plane
>
: time histories. Also, the time history of the states from
LN
- beginning to end were computed. It was planned that this

]

i state time history would be the desired state trajectory
N which would be uupplied to a state servo for the vehicle.
- Figure 4.1 illustrates this design concept. The servo then
” would follow the desired state and keep the error minimal
3 between the actual position and the desired position,

. 44
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Figure 4.1 Path Planner and Controller Relationship ﬁ
s
’
: . -
therefore following the optimal path. Consequently, the Ry
e ’
accuracy of the X history 1is of critical importance. E‘
-
o
With the assumptions used 1in <%the simplified linear ;
o
model, it was obvious that the straight ahead motion (the x 3'
ol
position) would not correspond well to the nonlinear model. 4
-
Since the depth was a function of the horizontal speed, the i
; z-position states could be expected to be in error as well. 'fa
These results can be seen graphically in Figure 4.2 where ﬁ
both the nonlinear and 1linear cptimized <trajectories are E
represented in the x-z plane. Due to the decoupled axial ﬁ;
l\'
) force equation (X), the 1linear trajectory extends to the ~
N
right of the nonlinear trajectory. Due to the f
I
“a
nonlinearities in the nonlinear model, the vehicle descends 2
more rapidly, then levels out for a longer period of time. ;
The linear model tends to make a more gradual descent and L(
o~
spend less time leveling out. S
The time to achieve the nonlinear optimal trajectory was %
an order of magnitude greater than for the linearized model L
2
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using the same weighting factors for both models. This
greatly hinders the feasibility of utilizing the full non- L
linear model for real time path planning. Since the
) nonlinear model was an entirely new plant, the analysis E
] discussed previously for the linear model would have to be E
applied to improve the timing and accuracy in the nonlinear
case. A study was conducted on the effect of weighting the .
ADS constraints only and an improvement from 60 seconds to E
approximately 22 seconds was achieved. Additiorzl time may
be saved if the best Q matrix could be determined as well.
One additional test was run on the comparison of the two
models. As mentioned earlier, the ADSL program also
produces the control vector that achieved the optimized o
states. In this test, the control vector for the linearized N
model (Fig. 4.3a) was supplied to the nonlinear simulation.
: The results showed that the nonlinear model descended to
within .05 feet of the ordered depth and the pitch was "
slightly over three tenths of a degree at the final time
(Fig. 4.3). Recalling that, although the states do not
match up well enough to use the simplified linear model due -

to the oversimplification of the decoupled axial force

-t

LN LS

equation (Fig. 4.2), the essential dynamics in the linear

.
“a Sy

N model were nevertheless valid since the desired depth was

a_e

achieved using the combination above.
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B. OBSTACLE AVOIDANCE

A primary goal of a path planner is to plan a safe
trajectory between two points specified by the command
intelligence of the vehicle. Between the two points may be

visible obstacles, as well as hidden obstacles that may be

AT A A}

unknown until the vehicle commences further on its
trajectory. Consequently, the safe path must sometimes be
recomputed in real time to avoid a collision. Figure 4.4
illustrates this with two trajectories. The first
trajectory (called the "nonlinear trajectory") was the
optimal or "best" path to the new depth without any
obstacles in the path. With an obstacle positioned at the
(+) symbol, the obstacle avoidance algorithm must compute a
new trajectory for the vehicle to take to avoid the
obstacle. The obstacle in this study was considered to be a
fixed obstacle in space.

1. Obstacle Avoidance Algorithm

A simple obstacle avoidance algorithm was written
for the purpose of testing the ADSL program to ensure its
capability was adequate to perform this function.

The algorithm was based on the procedure a human
would use to avoid an obstacle in his path. Once the
obstacle was detected, interest in the obstacle would
heighten. The distance between the individual and the

obstacle would be kept track of, and the human would take

appropriate action to avoid, or make the decision to

! S e e o w . B N N G e . .-
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collide, and pay the penalty. Once past, interest in the
object would decrease to zero. In an AUV, collision with
the obstacle will not be an option.

The size and position of any obstacle was determined
to be information supplied by the command intelligence of
the vehicle to the path planner. The command intelligence
also was assumed to generate an area surrounding the
obstacle that was termed the "avoidance sone." This zone
was based on the size and maneuverability of the vehicle and
the threat of the obstacle. This zone was what the path
planner saw as the obstacle which the trajectory of the AUV
center of gravity could not penetrate. For the purposes of
this study, this obstacle data was emulated by the
programmer who picked an arbitrary radius around a selected
point obstacle. This is illustrated in Figure 4.5. Also
for purposes of the present study, a one foot radius was
arbitrarily chosen. The avoidance zone appears oval in the
figure due to the axis scaling.

The algorithm, which can be seen in the THE1IND DSL
program in Appendix B, takes the time from start until the
vehicle would be at the x-position of the obstacle and
divides that equally into 10 positions with respect to time.
As the positions are reached at the specified times, the
distance between the vehicles' current position and the
obstacle was computed. The distance then was made into an

inequality constraint using ADS and defining IDG = 0 (refer

AR I S I T e o )
Yl e s LGN
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to Table 6). Each of these ten new constraints had to be
satisfied by ADS. Figure 4.6 illustrates the results using
the full scale nonlinear model. The obstacle was avoided
and the avoidance 2zone was not violated by the vehicle
trajectory.

This simple algorithm only concerned itself with the
obstacle up to the point where it was at the top center of
the avoidance zone. This point may not always be the
closest point of approach depending on the size of the
avoidance 2zone. In these cases, the algorithm could be
changed to compute distances to the obstacle for some
designated amount of time after passing it.

The 1linear and nonlinear obstacle avoidance runs

o 7

were timed to determine the time difference between the
obstructed and unobstructed run times. Table 9 presents the
results. It can be seen that the linear model run time was
increased four tenths of a second from the unobstructed case
to the obstructed case. This has a great advantage, again,
over the nonlinear case due to the fact that the nonlinear

problem doubled its run time in order to avoid the obstacle.

I I A T ST by S A Syt P P AN a T g N AT 0T AN NN

M
N Yoy



.,

$9, 0"

K ¥ X x X . 4 23 FXE T, T . e s e e DX F WV EEL -
ot y X FY T YV VR T,

DUOZ DOULPTOAY YITM 23IN0Y dduvrproay 9-p 3Inbtg

(I.D) NOLLISOd X

21-  ¥1- 91— @I~

01—

(LJd) HIJAA

|

o~}

............................................................ |

........................ 9

U ATIVISHO .+ , Ny

_AAAQIANVIN AONVUIOAV , .
AUOLIATVAL AVANTINON __

MAVIN HLLJAMA LA Sab Ll -

ANADAT
o
O T ORI, AAAAEAT VLSS TAT AARARSSS NIRRT YRS VECERNRSD




- . . - n . g > 5 g v < - UJ 'l J » . . v, - - 4 7 ' . . \J
0320 LR L W T W W P W W W O o T I T T - N MLa il et el ot SR PN LTI S AEA L A LN G ML VUl B Vol Wl Sl
! " ¥ %
§‘|
[)

. TABLE 9

N LINEAR/NONLINEAR OBSTACLE AVOIDANCE TIMES

MODEL TYPE WITHOUT OBSTACLE WITH OBSTACLE
LINEAR 3.12 SEC 3.50 SEC \

\ NONLINEAR 22.57 SEC 48.67 SEC

2. Trajectory Analysis .
& Figure 4.3 shows the obstacle avoidance path above ]
. the optimal trajectory. This indicates that there are

- limits to the vehicle trajectory due to the vehicle dynamics

and motion restrictions placed on the control surfaces. p

PPy

This effect was found when an obstacle was placed at

different points along the optimal path and the avoidance \ :

Pl A

trajectory was always above the obstacle. This is true

since the ADS end constraints that are "driving" the vehicle R

PR

are attempting to satisfy both of the weighted depth and i

oA
e

- pitch constraints. With an obstacle along the optimum path,
the vehicles' maneuverability characteristics come into play
--it becomes harder to take pitch off than it was to put it

y, on to achieve the desired end state.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The following conclusions <can be drawn from the

feasibility study:

1. Optimal control theory is a feasible method of path

planning with or without fixed obstacles. This E'
study demonstrated successful path planning using o
the following: ;
a) the objective function "
N
T . T {
[ ([xe(t)~x(t) ] Qxe(t)-x(t)] + u(t) Ru(t))dt , f
0 ~ 2 ol il ~ b
-
b) ADS equality constraints on desired end states, o
c) ADS inequality constraints for obstacle avoidance, g
d) a fixed step integration method (Rectangular) to =
integrate the rate equations and the objective -
function (time step = 0.1 sec, 10 intervals). -
2. Real time path planning may be achieved with 1linear Ny
models. "Real time" here is arbitrarily determined to
be from 1 to 2 minutes for the full 12 state N
optimization. Additional timing studies need to be $;
done in order to determine this more precisely. The N
linearized dive plane equations of motion were studied >
and it was determined that a solution for a 20 second
dive maneuver required three seconds of computer time
to produce the "best" path.

3. The full nonlinear model computation time for the same

linear dive maneuver was determined to be at most 22
seconds.

EAYREN PR AR bl 2

4, The simplified 1linear state trajectory was not
compatible with the nonlinear trajectory. The linear
model for dive plane motion exceeded the realm of
small perturbation theory enough to be considered as a
very poor substitute for planning the path of a real
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vehicle in the dive plane under the assumption of
decoupled dive plane motion.

S. The ADS optimization methods that gave the best

the

results in the unconstrained cases was the
Fletcher~Reeves method (014) and for the constrained
cases was the modified method of feasible directions
(057) . Introduction of the strategy option provided
less accuracy and more run time in the unconstrained

case, and good accuracy and additional time in the
constrained case.

The best method of achieving the trajectory between
the start point and terminal point was to utilize the
power of the ADS equality constraints to "drive" the
trajectory to the desired final condition states.

Weighting improved not only the accuracy but also run
times.

The weighting values of the constraints in the linear
model were not the "best® combination for the
nonlinear model. Weighting was determined to be a
function more of the plant model used than the size of

the maneuvers the plant must undergo when using ADS
constraints.

Obstacle avoidance was performed successfully using a
simple algorithm that enforced constraints on the
distance between the vehicle center of gravity and a
given radius around the  obstacle, called the
"avoidance zone."

RECOMMENDATIONS

The following recommendations are offered to continue

development of a path planner algorithm for use in an

autonomous underwater vehicle:

1.

Carry out the procedures implemented here on such
additional models as:

a) the full nonlinear model to simulate other vehicle
motion than the dive plane alone;

b) the full linearized model in other motions,

c) nonlinear reduced order models of the vehicle.
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Conduct model sensitivity studies on the limits of
maneuverability of the vehicle.

Continue development of the obstacle avoidance
function to be able to have the model traverse a more
dense environment of fixed and moving obstacles.

Develop the interface between the AUV command and
control intelligence and the path planner, and between
the vehicle controller and path planner.

Develop the program for eventual programming into a
small microprocessor-based control structure.
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APPENDIX A

EXAMPLE 10.2-6 FROM SAGE [REF. 19:P. 313]

Note: Solution presented here is based on the gradient in
function space technique.

1
Consider the minimization of J = %j' (x2 + u?)dt for the
0

system X = -x2 + u, x(0) = 10.0. We first need to determine

the adjoint and the gradient equations. For this problemn,

the Hamiltonian is H = %XZ + %uz - 3x2 + Ju, and thus the
adjoint equation is 3 = -x + 2)x with the terminal condition

(1) = 0. The control gradient is 5H/3u = u + . Suppose

that we guess the initial control u®(t) = 0, which is not
too unreasonable, since the final value of the control,
u(l), should be zero, and use K = 1. To implement the
gradient method, the steps we must take are:

1. Determine xN(t) from uN(t) for ¢t - (0,1] by

xN = -(xN(t)12 + uN(t), xN(0) = 10
2. Determine AN(t) from xN(t) by

AN = —xN(e) + 2 N)xN(e) W) = o
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\ 3. Determine >H/3uN from
. 7H :
=5 =ul(t) + Ny :
’ 2u g
4 * 3
»
' 'I
) ) N . N ~
4. Determine _u*(t) and 7" from g
~ulN(e) = -k JHN = - kuN(t) - x:N(¢)
u ~
! o
i - 5 l - 2 l 2
ey =k g e =k [ e+ Ne1? e .
; 0 3u 0 ,
e
2 ']
¥ 5. Compute the control for the next iteration
y Y
. d
- uN*l(e) = uN(t) + aulN(t) 3
J‘ ;
6. Shuffle data and repeat the procedure, starting at 1, .
until suN(t) or AN (t) changes very 1little from f
' iteration to iteration. A
For the particular initial control assumed here, we .
; obtain for the various steps in the procedure: ~
~ 1. u9(t) =0, xO(t) = 10/(1 + 10t) .
. r
N 2. 9ty = %[1 ~ (1 + 10t)2/121] .
N .
N 3. 5H/5u® =%[1 - (1 + 10t)2/121)
5 1 s
- 4. 1uO(t) = - 3[1 - (1 + 10t)2/121] N
" 1 2
1J%(t) = - 3 [ [1 - (1 + 10t)2/121]2%at .
. 0 2
: ‘
. = - (0.0458)
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5. ul(t) = uo(t) + MWO(t) = -5{1 + 10t)2/121].
Figures 2.1 and 2.2 are the curves generated by the

equations akove.

62




" )
)
., 4
4 : '
J . 3
i -
: i
» APPENDIX B
i PROGRAMS :
)
5 :
} This appendix contains the three primary programs thatwere .
used for this feasibility study. They are: ot
> ’
. 1) STSPACE3 DSL--This is the state formulated DSL simulation 0
S of the linearized model for motion in the vertical plane. ¢
.
A 2) THEIND DSL--This is the ADSL program used to optimize the
linear plant trajectories. ,
- >
} 3) OPTT3 DSL--This program is the ADSL program used to ?
) optimize the full scale nonlinear model with the stern and &
J bow planes decoupled. ’
N * -
) PROGRAM NAME: STSPACE3 DSL _
j: TITLE AUV VERTICAL PLANE MANEUVERS (STATE SPACE) REVISED N
k) * -
K.
:: * EQUILIBRIUM CONDITION IS CONSTANT SPEED (FT/SEC) IN '
9y * THE HORIZONTAL DIRECTION 4
f, *
A\ CONST U0=6.0 .
ot * i
N CONST MA= , THETAO= , WO= , Iy= ¢
: * :“
o CONST ZW=-~ , 2Q= , 2QDOT= , ZWDOT= -
~ CONST ZDB= , ZDS= , ZO0=
- .
: CONST Mw= , MQ= , MQDOT= , MWDOT= .
. CONST MDB= , MDS= , MTHETA= .
* P
'
[ METHOD RECT 4
CONTROL FINTIM = 10., DELT= .1 :
INITIAL .
. Al=-2W o
[ A2=(MA-ZWDOT) ;
- A3==(ZQ+MA) A
- A4=-ZQDOT .
- Bl=~MW ;
s B2=-MWDOT :
[« B3=-MQ -:.
> B4=(IY-MQDOT) .
. B5=-MTHETA 5
i C1=2ZDS "
! 63 .
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x>

a

P A N P e

C2=ZDB
C3=MDS
C4=MDB
C5=C3-(B4*C1) /A4
C6=C4-(B4*C2) /A4
D1=B2-(B4*A2) /A4
D2=Bl-(B4*Al) /A4
D3=B3-(B4*A3) /A4
*

DERIVATIVE

*
THETDD=(1/A4) * (C1*DS+C2*DB-A1*W-A2*WDOT-A3*THETAD)
WDOT= (1/D1)*(C5*DS + C6*DB- D2*W - D3*THETAD
B5*THETA)

THETAD= INTGRL (THETAO, THETDD)
THETA = INTGRL(THETAO,THETAD)
W = INTGRL(WO,WDOT)

Z = INTGRL(ZO,W=-(UO/UO)*THETA)
DEPTH=-2

PITCH=THETA/.01745
BOWANG=(DB/.01745)

STNANG=(DS/.01745)
*

DYNAMIC
*

DS = .08725*STEP(0.0)-.02843*STEP(2.0)-...
.003636*STEP(3.0)~-.008036*STEP(4.0)~...
.015477*STEP(5.0) -.02670*STEP(6.0) ~-. ..
.04007*STEP(7.0)-.053332*STEP(8.0) -
.086084*STEP(9.0)

DB = =-.2443*STEP(0.0) + .3186*STEP(8.0) +
.17*STEP(9.0)

»*
TERMINAL

*

PRINT 1.,THETDD,THETAD,THETA,2DD,W,Z,DEPTH, PITCH,DS...
, BOWANG , STNANG

SAVE .5,THETDD,THETAD, THETA, ZDD,W,Z,DEPTH, PITCH,DS. ..
, BOWANG , STNANG

GRAPH (DE=TEK618) TIME,DS

GRAPH (DE=TEK618) TIME, DEPTH

GRAPH (DE=TEK618) TIME,WDOT

GRAPH (DE=TEK618) TIME,W

GRAPH (DE=TEK618) TIME, THETDD

GRAPH (DE=TEK618) TIME,THETAD

GRAPH (DE=TEK618) TIME,THETA

GRAPH (DE=TEK618) TIME, PITCH

GRAPH (DE=TEK618) TIME, BOWANG

GRAPH (DE=TEK618) TIME, STNANG

END

STOP
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)
o
)
3 PROGRAM NAME: THEIND DSL
A
e TITLE RUN:(NR) LINEAR AUV DYNAMIC PATH PLANNER FOR VERTICAL
2 PLANE MOTION
* SEPARATED BOW AND STERN PLANE CONTROL NON-DIMENSIONAL
a * DATA FOR NEW OBJECTIVE THAT INCLUDES THE ERROR UNWEIGHTED
§ * UPDATE: **OBSTACLE AVOIDANCE**
* USING OBJ= INTGRL? (Z-10) **2+Wx*2+THETA**2+THETAD**2+U**2
o} * OBJECTIVE FUNCTION WITH ADS CONSTRAINTS
" kkhkkhkkhhkkkkkhkdkkkkkkkkux ADSI, SET UP*kkdkkkkkhkkhhkkhhkhhk
. x*
py FIXED ISTRAT, IOPT, IONED, IPRINT, INFO, IGRAD, NDV, NCON
o FIXED IDG, NGT, IC, NRA, NCOLA, NRWK, IWK, NRIWK, O, H
7 D DIMENSION AW(42,42)
- ARRAY WK(5000), IWK(1000),DIST(15)
v ARRAY DX(21),VLB(21),VUB(21),GW(15), DF(21), IDG(15), IC(20)
PARAM NRA=42, NCOLA=42, NRWK=5000, NRIWK=1000
o PARAM IGRAD=0, INFO=0, NDV=20, NCON=15, NGT=20
" TABLE DX(1-2)=2*.0, DX(3-21)=19%0., IDG(1l=-4)=4%-1
: TABLE IDG(5-15)=11%0
TABLE VLB(1-9)=10%-.17452, VLB(11~-19)=9%-,2443
o TABLE VLB(10)=0.,VLB(20-21)=0.
TABLE VUB(1-9)=9%.17452, VUB(11-19)=9%,2443
2 TABLE VUB(10)=0.,VUB(20-21)=0.
N TABLE DIST(15)=15%0.0
- PARAM ISTRAT=0, IOPT=5, IONED=7, IPRINT=2020
o INCON U=0., H=0
> METHOD RECT
b CONTROL FINTIM= 7.00, DELT=.1
- PRINT THETAD,W,DEPTH,PITCH, XPOS, ZPOS,DT
- *
:F; ‘:***************************DSL MODEL SET UPkkkkkkhhkhkhkhkkhkk
o * EQUILIBRIUM CONDITION IS CONSTANT SPEED (NON-
* DIMENSIONALIZED) BY UO = 6 FT/SEC
*
- CONST UO=1.0, XOBS= , 20BS=
a *
o CONST MA=0.0962, THETAO=0., ZO0=0.,WO=0., IY=.00606
(." *
- CONST 2ZW= , 2Q= , ZQDOT= , ZWDOT=
- CONST ZDB= , 2DS= , 20=0.
[+ *
™ CONST = , MQ= , MQDOT= , MWDOT=
o CONST MDB= , MDS= , MTHETA= .
. *
s *
2 INITIAL
e .
~ ORDDEP = 1.00
s Al=-2ZW
- A2=(MA-ZWDOT) 1
5 66 '
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A3=-(ZQ+MA) 2
A4=-ZQDOT
’ Bl=-MW
B2=-MWDOT
B3=-MQ
B4=(IY-MQDOT)
B5=-MTHETA
C1=2DS
| C2=ZDB
) C3=MDS
C4=MDB
C5=C3-(B4*C1) /A4
C6=C4-(B4*C2) /A4
D1=B2-(B4*A2) /A4
) D2=Bl-(B4*Al) /A4 -
D3=B3-(B4*A3) /A4 -
CALL DADS (INFO, ISTRAT, IOPT,IONED,IPRINT,IGRAD,... '
4 NDV,NCON, DX, VLB, VUB, OBJ,GW, IDG,NGT, IC,DF, ... ;
‘ AW,NRA,NCOLA, WK, NRWK, IWK, NRIWK) h

KA COoDN

X F S AL,

oA o

s
W ]

. IF (INFO.EQ.0) DELPRT = 0.2 W
¢ IF(INFO.EQ.0) DELPLT = 0.2 o
i %*
DERIVATIVE A
0 * o
R THETDD=(1/A4) * (C1*DS+C2*DB-A1*W-A2+*WDOT-A3*THETAD) X
s WDOT= (1/D1)*(C5*DS + C6*DB - D2*W - D3*THETAD - R
A BS*THETA) N
; THETAD= INTGRL(THETAO, THETDD) >
THETA = INTGRL(THETAO, THETAD) b4
‘ W' = INTGRL(WO,WDOT) 3
5 Z = INTGRL(ZO,W-UO*THETA) -
' DEPTH=-2 i
' PITCH=THETA/.01745 N
BOWANG= (DB/ .01745) >
STNANG=(DS/.01745) L
INTGRD = ((W*W+(Z-ORDDEP)* (Z-ORDDEP)+. .. N,
THETAD*THETAD+THETA*THETA)) + (DS*DS+DB*DB) \»
| OBJ1 = INTGRL(O., (0.5)*INTGRD) N
OBJ = OBRJ1 '.3.‘
" * i
DYNAMIC .
*
RN=TIME/ (FINTIM/10.-DELT/10000.)
g O=INT (RN)+1
s IF(0.EQ.11) 0=10
* *
* ADDITIONALLY THE PLANES SHOULD BE AT EQUILIBRIUM SO THE .
: * VEHICLE WILL PROCEED AT THIS NEW DEPTH WITHIN SOME y
; * TOLERANCE N
) * N
3 DS=DX(O) X
v DB=DX (10+0) ~
) e
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IF(0.GE.10) DS=0.
IF(0.GE.10) DB=0.

Ll E L LD

CONSTRAINTS FOR A DIVE

* * ¥ *

2 ORDERED DFPTH = ORDDEP
Ly GW(1) =(Z-ORDDEP)/2.
GW(2) =(ORDDEP-Z)/2.

4 *
w * AUV'S FINAL STATE MUST BE LEVEL FLIGHT AS FOLLOWS
' %*
» GW(3) = THETA*10.
& GW(4) = -THETA*10.
by, *
o *  X-Z POSITIONING FOR OBSTACLE AVOIDANCE 1
3 XPOS=17.425*TIME ‘
) ZPOS=-Z*17.425 !
%*

o * AVOIDING THE OBSTACLE

2 IF(TIME.GE.0.0.AND.TIME.LE.XOBS/17.425) THEN

- TIME1 = XOBS/17.425

“ QN=TIME/ (TIME1/10.-DELT/10000.)

> D=INT I (QN) + 1

- DIST (D) =SQRT ( (XPOS-XOBS) * (XPOS-XOBS) + (ZPOS-ZOBS) *. . . )
. (ZPOS~ZO0BS)) A
e GW(4+D) = (1.-DIST(D))

- ELSE

-, ENDIF

*

_ TERMINAL

" IF (INFO.EQ.0) THEN ‘
- DO 9000 D=1,11 A
59 WRITE (*,9999) DIST(D) ‘
i 9999 FORMAT (1X,E15.4)
» 9000 CONTINUE
d ELSE
o ENDIF
&~ IF(INFO.EQ.0) CALL ENDJOB

N CALL RERUN

" . \
> END

g STOP :
5 NOTE: The coefficients must be provided for the particular

s vehicle being studied.
B

»

'l
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PROGRAM NAME: OPTT3 DSL

TITLE RUN: NONLINEAR AUV MODEL / STERN PLANE AND BOW PLANE
SEPARATED
( UPDATED:11/16/87
( 100.00 FT DEPTH CHANGE IN 20 SEC
( RIGHT OBJ EQUATION
(
(

S T Y

-

ADS CONSTRAINTS ON DEPTH AND PITCH
OBSTACLE FURTHER DOWN THE TRAJECTORY AND ABOVE IT

7

dhkkhkhkkkkkhkhkhhhdhkhkhkhhkkADST, SET=UP % % %k k k& d k Kk k& dodedd g g & do %k ok ke ok k
*FIXED ISTRAT, IOPT, IONED, IPRINT, INFO, IGRAD, NDV, NCON
FIXED IDG, NGT, IC, NRA, NCOLA, NRWK, IWK, NRIWK, O, H,D,C
D DIMENSION AW(82,82)

ARRAY WK(5000), IWK(1000)

ARRAY DIST(40)

ARRAY DX(21),VLB(21),VUB(21),GW(15), DF(21), IDG(15), IC(20)
PARAM NRA=82, NCOLA=82, NRWK=5000, NRIWK=1000

PARAM IGRAD=0, INFO=0, NDV=20, NCON=15, NGT=20

TABLE DX(1-2)=2%.0,DX(3-21)=19%0., IDG(1l-4)=4%-1

TABLE IDG(5-15)=11%0

TABLE VLB(1~-9)=9%-,17452, VLB(11-19)=9%-.2443

TABLE VLB(10)=0.,VLB(20-21)=0.

TABLE VUB(1-9)=9%.17452, VUB(11-19)=9%.2443

TABLE VUB(10)=0.,VUB(20-21)=0.TABLE DIST(1-40)=40+%0.

PARAM ISTRAT=0, IOPT=5, IONED=7, IPRINT=2020

INCON H=0, OBS1=0.,YZONE=0.

METHOD RECT

CONTROL FINTIM=20., DELT=.10

PRINT THETAD,W,DEPTH,PITCH, XPOS,DEPTH,NDX,NDZ , NDT

%*

hhkkhkkkkhkhkrhkkkhkhkk®xDS], MODEL SET UDPkkskkhhkhkdhkhhkhhhhhhkhhhk
*

D DIMENSION MM(6,6),G4(4),GK4(4),BR(4) ,HH(4)

D DIMENSION B(6,6),BB(6,6)

D DIMENSION A(12,12), AA(12,12)

D COMMON / BLOCK1l / F(12), FP(6), MMINV(6,6), UCF(4)
FIXED N,IA,IDGT,IER,LAST,J,K,M,JJ,KK,I

INTEGER

ARRAY WKAREA(54), X(12)
*

*

CONST
*

* LONGITUDINAL HYDRODYNAMIC COEFFICIENTS
*

Xaabo o A B

VUL AT A Thanl B IS0 R el A PN Y

l'r ol %

y PE AN
-’I‘l g %

-.‘
.}

XPP =

XUDOT=

XQDS=

XWW =

XDSDS=

XWDSN=  ,XDSDSN=

’?- ,'. 3 GV (S b AL '-‘&. ‘-'.

,'l."»{ l._ "\, 1
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t
} 4
* LATERAL HYDRODYNAMIC COEFFICIENTS '
* ':F
! CONST YPDOT= ,YRDOT= ,YPQ = ,YQR = . i
YVDOT= ,YP = (YR = SYVQ = ce v
YWP =  ,YWR = JYV = JYVW = . 5
YDR = ,CDY = N
! * o
; * NORMAL HYDRODYNAMIC COEFFICIENTS ~
A *
CONST 2ZQDOT= ,ZPP = ,ZPR = ,ZRR = . 2
ZWDOT= ,2Q = ,ZVP = ,ZVR = -
ZW = ,ZVV = ,2DS = ,2DB = . ;t
‘ ZQN =  ,ZWN = , ZDSN= ,CDZ = 3
, * .
; * ROLL HYDRODYNAMIC COEFFITIENTS i
*
CONST KPDOT= ,KRDOT= ,KPQ = ,KQR = . (N
KVDOT= ,KP = KR = , KVQ= .. "
KWP =  ,KWR = KV = ,KVW = ces o
KPN = ,KDB = ;
! *
* PITCH HYDRODYNAMIC COEFFICIENTS l;
[! ¥ )
N
CONST MQDOT= ,MPP = /MPR = /MRR = ces ~
MWDOT= ,MQ = /MVP = JMVR = - i
MW = JMVV = ,MDS = ,MDB = .. t
MQN = ,MWN = ,MDSN = Y
* S
* YAW HYDRODYNAMIC COEFFICIENTS T
* e
CONST NPDOT= ,NRDOT= ,NPQ = ,NQR = e e
; NVDOT= ,NP = ,NR = ,NVQ = .. =
’ NWP = ,NWR = NV = ,NVW = e ‘
NDR = )
* ‘ X
* MASS CHARACTERISTICS OF THE FLOODED MARK IX VEHICLE >3
* "l
CONST WEIGHT = , BOY = ,VOL = ,XG = ces o
YG = , 2G = ,XB = ,ZB = .. .
IX = , IY = 12 = ,IXZ = ces .
1Yz = , IXY = ,YB = - 2
L = , RHO = ,G = ,NU = ces %
A0 = ,KPROP = ,NPROP = , X1TEST= cee o
DEGRUD= , DEGSTN= -0
* " .
* INPUT INITIAL CONDITIONS HERE IF REQUIRED .
INITIAL S
NOSORT o
D=0 ’ .
H=H+1 .
"
70 3
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NS
ORDDEP = 17.425 ey
XOBS=58.666 )
ZOBS=6.0000 ]
IF(H.EQ.1) THEN b
U= 0.0 ]
V = 0.0 .
W = 0.0 Ay
P=0.0 NN
Q = 0.0
R = 0.0 o
XPOS = 0.0 ey
YPOS = 0.0 o
ZPOS = 0.0 L
PSI = 0.0 N
THETA = 0.0 g
PHI = 0.0 §
U0 = 6.0 oy
VO = 0.0 &;
WO = 0.0 Q
PO = 0.0 o
Q0 = 0.0 2
RO = 0.0
PHIO = 0.0 o
THETAO = 0.0 o
PSIO = 0.0 pON
DB= 0.0 %
DS = 0.0 o
DR = 0.0 »
RPM = 500 3
LATYAW = 0.0 -
NORPIT = 0.0 o
RE = UO*L/NU N
CDO = .00385 + (1.296E-17)*(RE - 1.2E7)**2 i
DEFINE LENGTH FRACTIONS FOR GAUSS QUADUTURE TERMS N
\.'.
G4(1l) = 0.069431844 o
G4(2) = 0.330009478 e
G4(3) = 0.669990521 Y\
G4 (4) = 0.930568155 .
DEFINE WEIGHT FRACTIONS FOR GAUSS QUADUTURE TERMS K
v
GK4 (1) = 0.1739274225687 NS
GK4 (2) = 0.3260725774312 g
GK4 (3) = 0.3260725774312 ®
GK4(4) = 0.1739274225687 o~

fa
-’-/.

DEFINE THE BREADTH BB AND HEIGHT HH TERMS FOR THE
INTEGRATION

.
.




\-
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.“I
fu
gt BR(1) = 75.7/12
o BR(2) = 75.7/12
o BR(3) = 75.7/12
L BR(4) = 55.08/12
*
o HH(1) = 16.38/12
> HH(2) = 31.85/12
o HH(3) = 31.85/12
~ HH(4) = 23.76/12
~ *
MASS = WEIGHT/G

B » *
A DIVAMP = DEGSTN*0.0174532925
o RUDAMP = DEGRUD*0.0174532925

» *
:

N =6
& DO 15 J = 1,N
% DO 10 K = 1,N
s MMINV(J,K) = 0.0
5 MM(J,K) = 0.0
' 10 CONTINUE
15 CONTINUE

“ *
Ny *
W *
\‘: *
’ :f *
:r' *
o MM(1,1) = MASS =((RHO/2)*(L**3)*XUDOT)
7N MM(1,5) = MASS*ZG
‘. MM(1,6) = -MASS*YG
- *
<, MM(2,2) = MASS - ((RHO/2)*{L*#*3)*YVDOT)

: MM(2,4) = -MASS*ZG -((RHO/2)*(L**4)*YPDOT)
e MM(2,6) = MASS*XG - ((RHO/2)*(L**4)*YRDOT)
N *

- MM(3,3) = MASS - ((RHO/2)*(L*#*3)*ZWDOT)

5 MM(3,4) = MASS*YG

- MM(3,5) = -MASS*XG -((RHO/2)* (L**4)*ZQDOT)
. *

= MM(4,2) = -MASS*2G - ((RHO/2)*(L**4)*KVDOT)
Y MM(4,3) = MASS*YG

- MM(4,4) = IX - ((RHO/2)*(L**5)*KPDOT)

e MM(4,5) = -IXY

o MM(4,6) = =-IXZ - ((RHO/2)*(L**5)*KRDOT)

ho MM(5,1) = MASS*ZG

o MM(5,3) = -MASS*XG -( (RHO/2)*(L**4)*MWDOT)
" MM(5,4) = -IXY
" MM(5,5) = IY =((RHO/2)*(L**5)*MQDOT)

o MM(5,6) = -IYZ
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MM(6,1) = ~MASS*YG
MM(6,2) = MASS*XG -( (RHO/2)* (L**4) *NVDOT)
MM(6,4) = ~IXZ - ((RHO/2)*(L**5)*NPDOT)
MM(6,5) = -IYZ
MM(6,6) = IZ - ((RHO/2)*(L**5)*NRDOT)
*
*
LAST = N*N+3*N
DO 20 M = 1,LAST
WKAREA(M) = 0.0
20 CONTINUE
*
IER = O
A =6
IDGT = 4

WRITE( 8,400) ((MM(I,J), J =1,6),I1 = 1,6)

CALL LINV2F(MM,N,IA,MMINV,IDGT,WKAREA,6 IER)

r

WRITE( 8,400) ((MMINV(I,J), J = 1,6),I = 1,86)
400  FORMAT(6E12.4)

T

ELSE
ENDIF

£ <«

CALL DADS (INFO,ISTRAT, IOPT, IONED, IPRINT, IGRAD, ...
NDV, NCON, DX, VLB, VUB, OBJ,GW, IDG, NGT, IC, DF,AW,NRA, ...
NCOLA, WK, NRWK, IWK, NRIWK)

i S AU

*

IF (INFO.EQ.0) DELPRT = 1.0 %
* "
DERIVATIVE -
NOSORT -
" {
* PROPULSION MODEL .

SIGNU = 1.0

IF (U.LT.0.0) SIGNU = -1.0

IF (ABS(U).LT.X1TEST) U = X1TEST
SIGNN = 1.0

IF (RPM.LT.0.0) SIGNN = -1.0

ETA = 0.012*RPM/U

RE = U*L/NU

CDO = .00385 + (1.296E-17)*(RE - 1.2E7)**2
CT = 0.008*L**2*ETA*ABS (ETA)/(A0)

CT1 = 0.008*L**2/ (AQ)

EPS = -1.0+SIGNN/SIGNU* (SQRT(CT+1.0)-...

1.0)/(SQORT(CT1+1.0)~1.0)
XPROP = CDO* (ETA*ABS (ETA) -1.0)

* CALCULATE THE DRAG FORCE, INTEGRATE THE DRAG OVER THE
73
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VEHICLE AND INTEGRATE USING A 4 TERM GAUSS QUADUTURE

LATYAW = 0.0
NORPIT = 0.0
DO 500 K = 1,4
UCF(K) = SQRT((V+G4 (K)*R*L)**2 + (W-G4 (K)*Q*L)**2)

IF (UCF(K) .GT.1E-10) THEN
TERMO = (RHO/2)* (CDY*HH (K)* (V+G4 (K) *R*L) **2 +, ..

TE
TE
LA
NO
EN

CDZ*BR (K) * (W-G4 (K) *Q*L) **2)
TERMO* (V+G4 (K) *R*L) /UCF (K)
TERMO* (W-G4 (K) *Q*L) /UCF (K)
LATYAW + TERM1*GK4 (K) *L
NORPIT + TERM2*GK4 (K) *L

RM1
RM2
TYAW
RPIT
D IF

CONTINUE

FORCE EQUATIONS

LONGITUDINAL FORCE

FP(1)

LATERAL

FP(2)

=MASS*V*R-MASS*W*Q+MASS*XG*Q#**2+MASS*XG*R**2— , .
MASS*YG*P*Q-MASS*ZG*P*R+ (RHO/2) kxL*x*4 *
(XPP*DP*#*2 + XQQ*Q**2 + XRR*R**2 + XPR*DP*R)
+(RHO/2) *L**3% (XWQ*W*Q +XVP*V#*P+XVR*V*R+U*Q
* (XQDS*DS+XQDB*DB) +XRDR*U*R* DR) +
(RHO/2) *L**2% (XVVAV*%2 + XWWAW**2 +
XVDR*U*V*DR + U*W* (XWDS*DS+XWDB*DB)+Uk*2*
(XDSDS*DS**2+XDBDB*DB**2 + XDRDR*DR**2))-
(WEIGHT -BOY)*SIN(THETA) + (RHO/2)*L*#*3% ...
XQDSN*U*Q*DS*EPS+ (RHO/2) *L*#*2 % (XWDSN*U*W*DS+. . .
XDSDSN*U#**2#*DS*#2) *EPS + (RHO/2) *L**2*U**2*XPROP

FORCE

-MASS*U*R + MASS*XG*P*Q + MASS*YG*R##*2 -
MASS*ZG*Q*R + (RHO/2) *L**4* (YPQ*P*Q +
YQR*Q*R) + (RHO/2) *L**3% (YP*U*P + YR*U*R + -
YVQ*V*Q + YWP*W*P + YWR*W*R) + (RHO/2)*L*#*2%, ..
(YV*U*V + YVW*V*W +YDR*U**2*DR) -LATYAW
+(WEIGHT-BOY)*... COS(THETA)*SIN (PHI)

NORMAL FORCE

FP(3) = MASS*U*Q - MASS*V*P - MASS*XG*P*R -

MASS*YG*Q*R +MASS*ZG*P**2 + MASS*ZG*Q**2 + .,
(RHO/2) *L**4* (ZPP*P**2 + ZPR*P*R +ZRR*R**2) ..,
+ (RHO/2) *L**3*% (ZQ*U*Q + ZVP*V*P + ZVR*V#*R)...
+ (RHO/2) *L** 2% (ZW*U*W + ZVVAVk*24+Uk*2* (ZDS*, ..
DS+ZDB*DB) ) =-NORPIT+ (WEIGHT-BOY) *COS (THETA) *. ..
COS(PHI)+ (RHO/2) *L**3*ZQN*U*Q*EPS
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+ (RHO/2) *L**2* (ZWN*U*W +ZDSN*U**2*DS) *EPS
ROLL FORCE

FP(4) =-IZ2*Q*R+IY*Q*R-IXY*P*R +IYZ*Q**2 -IYZ*R**2
+IXZ*P*Q +MASS*YG*U*Q =-MASS*YG*V*P -
MASS*ZG*W*P+ (RHO/2) *L**5% (KPQ*P*Q+ KQR*Q*R) .
+(RHO/2) *L**4 % (KP*U*P +KR*U*R + KVQ*V*Q +
KWP*W*P + KWR*W*R) +(RHO/2) *L**3% (KV*U*V +
KVW*V*W) +(YG*WEIGHT -YB*BOY)*COS(THETA)* ...
COS (PHI) =-(ZG*WEIGHT -ZB*BOY)*COS (THETA) *
SIN(PHI) + (RHO/2)*L**4*KPN*U*P*EPS+
(RHO/2) *L**3#U**2*KPROP +MASS*ZG*U*R

“eeTg " 4
vy VS

AN

PITCH FORCE

FP(5) = -IX*P*R +IZ*P*R+IXY*Q*R-IYZ*P*Q-IXZ*P**2
+IXZ*R**2 -MASS*XG*U*Q + MASS*XG*V*P +
MASS*ZG*V*R -MASS*ZG*W*Q +
(RHO/2) *L**5% (MPP*P*%2 +MPR*P*R .
+MRR*R**2) + (RHO/2) *L**4 % (MQ*U*Q + MVP*V*P +..
MVR*V#R) + (RHO/2)*L**3% (MW*U*W +
MVV*V**2+U**2% (MDS*DS+MDB*DB) ) + NORPIT -~
(XG*WEIGHT~ XB*BOY) *COS (THETA) *COS (PHI) +
(RHO/2) *L**3* (MWN*U*W+MDSN*U**2#DS) *EPS-
(ZG*WEIGHT~ZB*BOY) *SIN (THETA)

e v o

YAW FORCE

FP(6) = -IY*P*Q+IX*P*Q+IXY*P**2-IXY*Q**2+IYZ*P*R
IXZ*Q*R -MASS*XG*U*R + MASS*XG*W*P -
MASS*YG*V*R + MASS*YG*W*Q +
(RHO/2) *L**5% (NPQ*P*Q + NQR*Q*R)
+(RHO/2) *L**4* (NP*U*P+NR*U*R + NVQ*V*Q
+NWP*W*P + NWR*W*R) +(RHO/2)*L**3% (NVxU*V
NVW*V#W+NDR*U**2*DR) - LATYAW + (XG*WEIGHT
XB*BOY) *COS (THETA) *SIN (PHI) + (YG*WEIGHT) *
SIN(THE TA)+(RHO/2)*L**3*U**2*NPROP-
YB*BOY*SIN(THETA)

+

NOW COMPUTE THE F(1-6) FUNCTIONS

DO 600 J = 1,6

F(J) = 0.0
DO 600 K = 1,6

F(J) = MMINV(J,K)*FP(K) + F(J)
CONTINUE

THE LAST SIX EQUATIONS COME FROM THE KINEMATIC
RELATIONS

FIRST SET THE DRIFT CURRENT VALUES
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e N w DO ANLEN AN BN g N o « I o A .
o
wt
*
uco = 0.0
VCO = 0.0
WCO = 0.0
*
ﬁ * INERTIAL POSITION RATES F(7-9)
! *
25 F(7) = UCO + U*COS(PSI)*COS(THETA) + e
V* (COS (PSI) *SIN(THETA) * ...

SIN(PHI) - SIN(PSI)*COS(PHI)) + ...
W* (COS (PST) *SIN(THETA) *COS (PHI) + ...

" SIN(PSI)*SIN(PHI))

P *

y F(8) = VCO + U*SIN(PSI)*COS(THETA) + -
. V* (SIN(PSI)*SIN(THETA) *SIN(PHI) + e
. COS (PSI)*COS (PHI) )+ W* (SIN(PSI)*SIN(THETA)*...

COS (PHI) -COS(PSI)*SIN(PHI))

A F(9) = WCO - U*SIN(THETA) +V*COS(THETA)*SIN(PHI) ...
. +W*COS (THETA) *COS (PHI)
\d *
~ * EULER ANGLE RATES F(10-12)
*
i F(10) = P + Q*SIN(PHI)*TAN(THETA)+ ...
V) R*COS (PHI) *TAN (THETA) t
D-J * \]
2 F(11) = Q*COS(PHI) - R*SIN(PHI) ‘
pe *
F(12) = Q*SIN(PHI)/COS(THETA) + R*COS(PHI)/COS (THETA)
* :
UDOT = F(1) )
VDOT = F(2)
WDOT = F(3)
PDOT = F(4)
>, QDOT = F(5)
’ RDOT = F(6)
. XDOT = F(7) :
YDOT = F(8) )
ZDOT = F(9) ‘

g PSIDOT = F(12) y

. *
- U = INTGRL (UO,UDOT)

. V = INTGRL(0.0,VDOT)

W = INTGRL(0.0,WDOT)

- P = INTGRL(0.0,PDOT) !
- Q = INTGRL(0.0,QDOT) .
N R = INTGRL(0.0,RDOT)

. XPOS = INTGRL(O0.0,XDOT)

'

<

0

O

0
/]

INTGRL(0.0,YDOT)
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ZPOS = INTGRL(0.0,ZDOT)
PHI = INTGRL(0.0,PHIDOT)
THETA = INTGRL(O0.O,THETAD)
PSI = INTGRL(0.0,PSIDOT)

*

PHIANG = PHI/0.0174532925
THEANG = THETA/0.0174532925
PSIANG = PSI/0.0174532925

DEPTH=-ZPOS
PITCH=THEANG
BOWANG=(DB/.01745)
STNANG=(DS/.01745)

INTGRD = (U*U+V*V+W*W+P*P+Q*Q+R*R+XPOS*XPOS+YPOS*. . .
YPOS+ (ZPOS~ORDDEP) * (ZPOS-ORDDEP) +PHI *PHI+.
THETA*THETA+PSI*PSI) + (DS*DS+DB*DB)

OBJ1 = INTGRL(O., (0.5)*INTGRD)
OBJ = OBJ1

*

DYNAMIC

RN=TIME/ (FINTIM/10.
O=INT(RN)+1

~DELT/10000.)

IF(2.EQ.11) 0=10
*
* ADDITIONALLY THE PLANES SHOULD BE AT EQUILIBRIUM SO THE
* VEHICLE WILL PROCEED AT THIS NEW DEPTH WITHIN SOME
* TOLERANCE
*
DS=DX(0)
DB=DX (10+0)
IF(0.GE.10) DS=0.
IF(0.GE.10) DB=0.
* DR=DX (20+0)
* RPM=DX (30+0)
*
* CONSTRAINTS FOR A DIVE
*
* ORDERED DEPTH = ORDDEP

GW(1) = (ZPOS-ORDDEP)/S.
GW(2) = (ORDDEP-ZPOS)/5.

* AUV'S FINAL STATE MUST BE LEVEL FLIGHT AS FOLLOWS
GW(3) = THETA/S.
GW(4) = =-THETA/5.

*

AVOIDING THE OBSTACLE

IF(TIME.GE.0.0.AND.TIME.LE.XOBS/U) THEN
TIMEl1 = XOBS/U

QN=TIME/ (TIME1/10.-DELT/10000.)

D=INT (QN) + 1

DIST (D) =SQRT ( (XPOS-XOBS) * (XPOS~-XOBS) + (ZPOS -
ZOBS) * (ZPOS-ZOBS)) GW(4+D) = (1.-DIST(D))
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$\ EI_;SE
») ENDIF
" NDX=XPOS/17.425
&N NDZ=-ZP0S/17.425
NDT=TIME*6./17.425
* |
>l TERMINAL
Sj *
o) IF(INFO.EQ.0) THEN !
[~ DO 9000 D=1,11
g WRITE(*,9999) DIST(D)
9999 FORMAT(1X,E15.4)
. 9000 CONTINUE
= ELSE
L ENDIF
N IF(INFO.EQ.0) CALL ENDJOB
‘ CALL RERUN
f_' *
~ END
" STOP
L
- o . .
(', NOTE: The coefficients must be supplied for the particular
: vehicle being studied.
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